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Abstract. Possibilities of working out the theory of polarization in perovskite-type oxides in
frameworks of localized and delocalized models are analysed. Born effective charges are used
as a criterion of correlating these models. It is shown that taking into account gradients of
effective electric fields on anions and high electric permittivity ensures the adequate description
of polarization in these crystals by using the Slater localized (static) model. The results of
our calculations in the framework of the Slater model are given and compared withab initio
calculation data.

1. Introduction

The classical theory of crystal polarization has been developed on the basis of localized
models [1–4], in which ions of the crystal lattice have been presented as a point
charge assembly with dipole moments induced by an external electric field or sublattice
displacements. In perovskite-type ABO3 oxides a strong electrostatic interaction of these
moments leads to the very large local (internal) electric fields on the B and O1 ions. The
large internal fields are the cause of crystal instability provoking the ferroelectric phase
transition. A flaw of the localized models is that, as a rule, they eliminate the mixed ion–
covalent character of chemical bonds resulting in the delocalization of the electronic charge.
The delocalization effects are taken into account inab initio calculations [5–8], the authors
of which suppose that the anomalously large transfer of the delocalized electronic charge by
the change of the length of the chemical bonds is representative for the considered crystals.

The present paper is devoted to a comparative analysis of the results of application
of the localized and delocalized models to the perovskite crystals in the cubic paraelectric
phase. The main attention is given to the calculation of the effective dynamical Born ion
charges, which are the quantitative measure of the Coulomb interaction in the crystals. For
this aim we have generalized the classical Born dynamical model [4] for the perovskite-type
ABO3 crystals. The Born charges for the BaTiO3, SrTiO3 and KNbO3 crystals in the cubic
paraelectric phase have been calculated for the standard set of electronic polarizabilities
[2, 3] and also for the case of variable effective polarizabilities of cations and anions. The
corresponding set of the electronic polarizability values permitting us to reach a satisfactory
fitting to the Born charges defined in the delocalized models [5–8] has been also found.
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2. Results and discussion

In the classical Born model [4] the dynamical effective ion chargesZ∗j for the binary
NaCl-type cubic crystals (j = 1, 2) can be expressed as

Z∗j = Zj(∂EHFj /∂E)E=0 (1)

whereZj is the static ion charge of thej th ion, EHFj = (ε∞ + 2)E/3 andE∗j are the
local Lorentz fields on the ions of thej th sublattice induced by the weak high-frequency
or low-frequency macroscopic fieldE, respectively, andε∞ is a relative high-frequency
(electronic) dielectric permittivity which is equal to the square of the refractive index. The
equation (1) gives us the possibility to express the Born effective chargesZ∗j in terms of
appropriate local fields.

In the binary NaCl-type crystalsEHF1 = EHF2 , E∗1 = E∗2 and there is no difference
betweenE∗j in nondisplaced and displaced ion positions. Our generalization of relation (1)
for the perovskite-type ABO3 crystals is found by taking into account:

(i) the difference of the local fieldsE∗j on the ions belonging to the different sublattices
[3];

(ii) the local field gradients∂E∗j /∂z which do not equal zero for the certain ion sublattices
[9]. The latter circumstance is equivalent to taking into consideration a change of theE∗j
value by the ion displacements [10–12].

In this case the polarization of the crystalP induced by the local fieldsE∗j and ionic
displacementsUj from the equilibrium positions is

P =
n∑
j=1

Pj =
n∑
j=1

Nj

[
αjε0

(
E∗j +

∂E∗j
∂z

Uj

)
+ ZjeUj

]
. (2)

HerePj , αj , Nj , n = 5, ε0 ande are the polarization, the electronic polarizability, numbers
of the j th type ions in a volume unit and of different ion types in the crystal, permittivity
of free space and the elementary charge, respectively. In equations (2)E∗j and ∂E∗j /∂z
represent the local fields and their gradients on the nondisplaced (symmetrical) ion positions
corresponding toUj = 0. All the local fields are equal to zero in absence of the external
field and displacements of ion sublattices.

A connection of the local fieldsE∗j with the sublattice polarizationsPj and the external
electric field can be defined by using the well known relation [3]

E∗j = E +
1

ε0

n∑
k=1

(
cjk + 1

3

)
Pk (3)

wherecjk are the structural coefficients of the local field which have been calculated by
Slater [3]. All thecjk coefficients in the cubic paraelectric phase can be determined by using
two constants,p = 0.6898 andq = 2.394 [3]. The substitution ofE∗j from equation (3)
into Pj from equation (2) allows us to obtain the set of linear equations forPj . After finding
and summingPj we obtain the crystal polarization in the form

P = ε0(ε∞ − 1)E +
n∑
j=1

NjZ
∗
j eUj (4)

where the effective dynamical Born chargesZ∗j are calculated by using a relation

Z∗j = −
1

Njαj

(
Zj + αjε0

e

∂E∗j
∂z

) n∑
k=1

∥∥∥∥clm + 1

3
− δlm

Nlαl

∥∥∥∥−1

jk

(5)
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(l, m = 1, . . . ,5, δlm is the Kronecker symbol). The first term in the right-hand part of
equation (4) represents an electronic contribution to the crystal polarizationP .

The local field gradients∂E∗j /∂z = (∂E∗j /∂z)dip + (∂E∗j /∂z)mon are the sum of the
point dipole and monopole (point charge) components. It is easy to show that for all the
ion sublattices the dipole components(∂E∗j /∂z)dip ≡ 0. Therefore we must calculate only
the monopole component. It can be done by using the usual formula forE∗j arising due to
Coulomb interaction of the point charges,

E∗i =
1

4πε0

∑
j 6=i

Zj ezij r
−3
ij (i, j = 1, . . . ,5). (6)

Here the static ion chargesZj = sZnomj are products of an ionicitys and nominal ion
chargesZnom1 = 2, Znom2 = 4, Znom3 = Znom4 = Znom5 = −2 for the BaTiO3 and SrTiO3

crystals andZnom1 = 1, Znom2 = 5, Znom3 = Znom4 = Znom5 = −2 for the KNbO3 crystals.
The summation extends over all the ions of the crystal except theith ion type,rij is the
distance between theith andj th ions andzij is a projection ofrij on thez axis. Then one
may derive

∂E∗i
∂z
= 1

4πε0

∑
j 6=i

Zj e
r2
ij − 3z2

ij

r5
ij

. (7)

The equation (7) can be represented with the use of the coefficientscjk [3] as

∂E∗i
∂z
= − e

ε0a3

∑
j

cijZj (8)

wherea is the unit-cell parameter and the summation extends over all the ion types in the
crystal. The field strength gradients on the cation positions are∂E∗1/∂z = ∂E∗2/∂z = 0. In
the case of the equality ofZj to the normal ion valence, we obtain for the anions

1

2

∂E∗3
∂z
= −∂E

∗
4

∂z
= −∂E

∗
5

∂z
= 2(p − q)e

ε0a3
. (9)

In a general case, the local field gradient values should be changed by the ionicitys

multiplication. Before calculating the Born chargesZ∗j we inverted the matrix in equation (5)
for arbitraryαj by using the Maple V Release 3 system. Then the substitution of∂E∗j /∂z
from (9) into (5) allowed us to calculateZ∗j using differentαj and s values. We have
obtained a best fitting to theab initio calculation data by using the values = 0.55 for all
the studied crystals. The ionicity is close to a value evaluated earlier for the BaTiO3 crystal
[9].

The calculated Born charges for the standardαj values [2, 3] are presented in the first
line of table 1. Both the cation chargesZ∗1 andZ∗2 which do not contain the field gradient
contributions are practically equal to the correspondingab initio charges. They do not differ
substantially from the ‘classical’ Born charges calculated using equation (1). The proximity
of Born cation charges to(ε∞ + 2)Zj/3 values was established earlier by Axe [11]. The
small difference betweenZ∗1,2 and(ε∞+2)Z1,2/3 arises owing to the well known difference
of E∗1,2 from the Lorentz field [3]. It is interesting to note thatZ∗Sr = 2.55 for SrTiO3 only
is somewhat greater thenZ∗Sr = 2.39 for the SrO crystal [13]. The largeZ∗2 is caused by
large valuesε∞ > 5 and nominal chargesZ2 = 4–5.

As to anion Born charges, as seen from table 1, the localized Slater model gives|Z∗3|
larger and|Z∗4| much less than the corresponding charges fromab initio calculations on the
basis of the delocalized model. Consequently the localized Slater model allows us to obtain
the large valuesZ∗2 and|Z∗3| only due to the large values ofε∞ and|∂E∗3,4/∂z| without any
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Table 1. Electronic polarizabilities (in 4π × 10−30 m3 units) and effective Born and Scott
charges of the BaTiO3, SrTiO3 and KNbO3 cubic crystals with the ionicitys = 0.55.

Crystal α1 α2 α3 α4 = α5 Z∗1 Z∗2 Z∗3 Z∗4 = Z∗5
BaTiO3 1.95 0.19 2.41 2.41 2.64 7.12−8.68 −0.540
(a = 0.401 nm, 5.25 0.60 1.95 0.98 2.63 7.16−5.51 −2.14
ε∞ = 5.76) ab initio Born charges 2.75 7.16−5.69 −2.11

ab initio Scott charges 1.15 2.98−2.37 −0.879

SrTiO3 1.60 0.19 2.25 2.25 2.55 7.44−8.97 −0.505
(a = 0.3905 nm, 4.60 0.50 1.87 0.97 2.59 7.10−5.65 −2.02
ε∞ = 5.66) ab initio Born charges 2.54 7.12−5.66 −2.00

ab initio Scott charges 1.07 2.99−2.38 −0.841

KNbO3 1.14 0.25 2.40 2.40 1.11 9.40−8.78 −0.484
(a = 0.4022 nm, 3.85 0.50 2.16 1.21 1.10 9.56−6.66 −1.60
ε∞ = 5.00) ab initio Born charges 1.14 9.23−7.01 −1.68

ab initio Scott charges 0.510 4.13−3.13 −0.751

specific microscopic suppositions. But the Slater model gives a relationZ∗3/Z
∗
4 ≈ 16–18

which arises owing to the high|∂E∗3,4/∂z| values and is very large in comparison with the
ab initio ratio Z∗3/Z

∗
4 ≈ 3–4. Such a situation with the anion charges may be improved by

using the known result [13] that in Clausius–Mossotti [1, 2, 4] and Slater [3] type formulae
the effective electronic polarizabilities should be used instead of the usual ones. The reason
is overlapping electronic shells of the nearest ions in crystals with the ion–covalent character
of chemical bonds. The calculations by the authors of [13] have shown that, in such binary
AO oxides as CaO, SrO and BaO, the effective electronic polarizabilities of the cations were
decreased in contrast with the effective electronic polarizabilities of the anions which were
increased in comparison with the usualαj values [2, 3]. However it is obviously that in the
ABO3 oxides the situation can be substantially different due to the gradients of the local
fields on the oxygen ions. Therefore we have variedαj in assumption of the possibility of
the anisotropy of the oxygen polarizabilities in order to obtain the values ofZ∗j nearest to
[6] (the second line in table 1). For all theαj combinations the high-frequency dielectric
permittivitiesε∞ of the crystals are chosen near the known experimental data for the cubic
phase in a vicinity of the Curie point.

Z∗1 andZ∗2 were little changed due toαj variation; meanwhileZ∗3 andZ∗4 were changed
enough, directed to decreasing theZ∗3/Z

∗
4 ratio. In the third and fourth lines of table 1

we placed theab initio Born chargesZ∗j [6] and the corresponding Scott [14] charges
ZS = Z∗/√ε∞.

The main result of our variation of theαj values is the anisotropy of the oxygen
electronic polarizabilitiesα3/α4 ≈ 1.8–2. The presence of such anisotropy in the ABO3

perovskite crystals is obvious due to an asymmetrical environment of the oxygen ions.
Anisotropy of the same character (α3/α4 > 1) was earlier described in a series of works
fulfilled in the framework of both a polarizable point-charge model [15] and a non-linear
shell model [7, 16, 17]. However ourZ∗j values are substantially nearer to theab initio ones
than the values calculated by using the shell model [7]. The second result is decreasing
theα3 andα4 in comparison with the corresponding Slater values. It is the consequence of
multiplying theα3,4 values by the large|∂E∗3,4/∂z| values in formula (5) forZ∗3,4. Decreasing
theα3 andα4 values leads to increasing theα1 andα2 ones in order to keepε∞ = constant.
But theseαj variations do not change the cation Born chargesZ∗1 andZ∗2.
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So, the very large effective Born chargesZ∗2 and |Z∗3| are characteristic of both
the delocalized and localized polarization models for the ABO3 type perovskite crystals.
Especially the large|Z∗3| values come out by using the standard (Slater) set of electronic
polarizabilities [3]. A microscopical mechanism of the largeZ∗2 and |Z∗3| values arising is
studied by the authors of [5–8] who connect it with the well known hybridization effect
between O 2p and Ti 3d (or Nb 4d) states (see, for example, [18]). The hybridization can
be changed during a variation of the length of B–O1 bonds and this dynamical effect can
be interpreted as the large charge transfer between the B and O1 ions.

Therefore the presence of considerable covalency in the B–O1 bonds of the ABO3
perovskites is not in doubt. However a quantitative evaluation of covalency (ionicity) is
very difficult because the static ion chargesZ are unknown and the Born effective charges
are not suited for this aim. In the case of the binary NaCl type cubic crystals the Scott
chargesZS = Z∗/√ε∞ [14] can be used for the evaluation of the ionicity. Experimental
data forε∞ [1] and equation (1) allow us to conclude that the difference betweenZS and
Z is less than 3%.

Howeverab initio data for theZS charges of the ABO3 perovskites (the fourth lines
in table 1) have a principal difference from the corresponding data for the NaCl type
crystals that is manifested in|ZS3 | > |Znom3 | and in the large anisotropyZS3/Z

S
4 . Both these

circumstances are impossible for the real static charges. To explain these results it is quite
enough to use relation (5). Because of the fact that theE∗j /(

√
ε∞E) value has only an

insignificant difference from 1 [3],ZSj andZj are close only for the cations. As to the
anions, the signs of∂E∗3/∂z < 0 and∂E∗4/∂z > 0 as well as the large field gradients lead to
theZS3 andZS4 values which are shown in table 1. In our opinion the local field gradients
can be considered as an additional source of the charge transfer.

The delocalized and localized models can be regarded as mutually supplementary
approaches to the problem of the crystal polarization.

3. Conclusions

(i) The large Born effective dynamical charges of the B and O1 ions can be interpreted in
the frameworks of the delocalized and localized models of the crystal lattice.

(ii) For the interpretation of the large transfer of the delocalized electronic charge it is
necessary to take into account the effective field gradients and the largeε∞ value in the
framework of the localized Slater model.

(iii) The Slater theory has general character and can be used for crystals with
ion–covalent chemical bonds. However, instead of the usual values of the electronic
polarizabilities, the effective ones should be used.
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